angles are slightly distorted compared with idealized SiO_{4} tetrahedra (deviations from mean values $8.67 \times 10^{-4}, \quad 9.07 \times 10^{-2}, \quad 7.75 \times 10^{-2} \quad$ and 9.55×10^{-20}, respectively) (Liebau, 1985). The K-O polyhedra are irregular in shape and bondings are ionic. Thus, these polyhedra compensate for all the strains derived from the framework constructed by the rigid, rather covalent $s p^{3}$ configuration of SiO_{4} and ZnO_{4}. This is consistent with the fact that compounds containing $A_{x} \mathrm{Zn}_{y} \mathrm{Si}_{p} \mathrm{O}_{q} \quad(A=$ alkali metal) are more abundant than those containing only $\mathrm{Zn}_{x} \mathrm{Si}_{p} \mathrm{O}_{q}$.

The rather large values of the standard deviations of the oxygen positional parameters in Table 2 may be attributed to both the small size of the crystal specimen and crystallogenetic problems. The syntheses of better single crystals for more precise structure analyses are still difficult by currently used hydrothermal methods.

The sum of electrostatic charges calculated with the parameters of Brown \& Wu (1976) is satisfactory, ranging from 1.86 to 2.11 for $\mathrm{O}, 2.057$ for Zn , from 0.804 to 0.805 for K and from 4.009 to 4.095 valence units for Si atoms.

The intensity measurements were carried out at the Research Center for Protein Engineering, Institute for Protein Research, Osaka University. The authors thank the staff at the Research Center for their kind
help with the manipulation of the four-circle diffractometer.

References

Brown, I. D. \& Wu, K. K. (1976). Acta Cryst. B32, 1957-1959.
Egorov-Tismenko, Y. K., Simonov, M. A. \& Belov, N. V. (1978). Sov. Phys. Dokl. 23, 99-100.

Hesse, K. F., Liebau, F. \& Böhm, H. (1977). Acta Cryst. B33, 1333-1337.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1965). Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Klaska, K. H., Eck, J. C. \& Pohl, D. (1978). Acta Cryst. B34, 3324-3325.
Liebau, F. (1985). Structural Chemistry of Silicates, pp. 126-129 and 267. Berlin: Springer.
Marumo, F. \& Syono, Y. (1968). Acta Cryst. B27, 1868-1870.
Plakhov, G. F. \& Belov, N. V. (1977). Sov. Phys. Dokl. 22, 709-711.
Plakhov, G. F. \& Belov, N. V. (1979). Kristallografiya, 24, 1177-1183.
Sakurai, T. (1971). Editor. The Universal Crystallographic Computation Program System. Tokyo: The Crystallographic Society of Japan.
Simonov, M. A., Belokoneva, E. L. \& Belov, N. V. (1976). Zh. Strukt. Khim. 18, 203-206.
Simonov, M. A., Belokoneva, E. L. \& Belov, N. V. (1980). Kristallografiya, 25, 1282-1284.
Yu, S. C., Smith, D. K. \& Austerman, S. B. (1978). Am. Mineral. 63, 1241-1248.
Zoltai, T. (1960). Am. Mineral. 45, 960-973.

Acta Cryst. (1990). C46, 1376-1378

Room-Temperature Structure of $\mathbf{L a}_{2} \mathbf{O}_{\mathbf{2}} \mathbf{S}_{\mathbf{2}}$

By J. Ostoréro
Laboratoire de Magnétisme et d'Optique des Solides, CNRS, 1 Place A. Briand, 92190 Meudon, France
and M. Leblanc
Laboratoire des Fluorures, UA 449, Faculté des Sciences, 72017 Le Mans CEDEX, France

(Received 17 May 1989; accepted 30 November 1989)

Abstract

Lanthanum oxide sulfide $\mathrm{La}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}, M_{r}=$ 373.947, orthorhombic, Cmca, $a=13.215$ (2), $b=$ 5.943 (1), $c=5.938$ (1) $\AA, V=466.3$ (2) $\AA^{3}, Z=4$, $D_{x}=5.32 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$ $18.87 \mathrm{~mm}^{-1}, F(000)=648, R=0.017,582$ unique observed reflections, flux growth, data corrected for twinning of the crystal. The structure is built from infinitive layers of $\mathrm{LaO}_{4} \mathrm{~S}_{4}$ square antiprisms connected by edges; these layers share either oxygen or disulfide common planes. Short S-S distances [$d=$ $2 \cdot 103$ (2) \AA] correspond to S_{2}^{2-} entities.

0108-2701/90/081376-03\$03.00

Introduction. The rare-earth oxysulfides $\mathrm{Ln}_{2} \mathrm{O}_{2} \mathrm{~S}$ form an important class of luminescent materials with numerous applications as phosphors (Klaassen, Van Leuken \& Maessen, 1988) or as high-gain laser materials (Alves, Buchanan, Wickersheim \& Yates, 1971). During the crystal growth by flux method of dilanthanum dioxide sulfide, formation of small yellow crystals occurs at low temperature (Ostoréro, Fadly \& Makram, 1976). They were identified as dilanthanum dioxide disulfide. The crystal structure of these compounds does not seem to be precisely
established (Khodadad, Tat Tek, Flahaut \& Domange, 1965; Ballestracci, 1967; Dugué, 1978; Wichelhaus, 1978; Borodulenko, Eliseev, Kuz'micheva, Perepelkin \& Ponomarev, 1984) and the true space group remains an open question. Due to the pseudo quadratic character of the cell, twinning can easily occur. This fact explains the discrepancy observed between the different results in the literature. Thus we have undertaken a new structure determination of $\mathrm{La}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$.

Experimental. Flux growth from $\mathrm{S}, \mathrm{K}_{2} \mathrm{~S}$ and $\mathrm{La}_{2} \mathrm{O}_{3}$ at $T=923 \mathrm{~K}$ under 1.5 MPa argon pressure with slow cooling at $1.5 \mathrm{Kh}^{-1}$ in $\mathrm{Al}_{2} \mathrm{O}_{3}$ crucible. Yellow rectangular platelet $0.04 \times 0.08 \times 0.18 \mathrm{~mm}$ limited by (100), ($01 \overline{1}$) and (011) faces respectively. Data collected on a Siemens AED2 four-circle diffractometer; ω - 2θ step-scan mode in N steps of $0.035^{\circ}, 37 \leq$ $N \leq 45$; time per step: min. 1 s , max. 4 s ; aperture D $=3.5 \mathrm{~mm}$; lattice constants based on 34 reflections measured in double step-scan mode at $\pm\left(2 \theta \simeq 30^{\circ}\right)$; absorption correction by the Gauss method, $A_{\text {max }}=$ $0.447, A_{\text {min }}=0.184$. $h \quad 0 \rightarrow 22, k 0 \rightarrow 10, l 0 \rightarrow 10$. Intensity measurement to $2 \theta \leq 80^{\circ}$ of one unique set; standard reflections $202,2 \overline{4} 0,20 \overline{2}$, intensity variation $0.7 \% ; 846$ reflections measured, 582 unique observed reflections used for refinements $[|F|>6 \sigma(|F|)]$; structure solved by direct methods with TANG option of SHELX76 program (Sheldrick, 1976). F magnitudes used in least-squares refinements: 18 parameters refined; max. $\Delta / \sigma=0.03$; secondaryextinction factor: $x=2.45(6) \times 10^{-7}$; atomic scattering factors for La, O, S from International Tables for X-ray Crystallography (1974); calculations with SHELX76 program (Sheldrick, 1976) on a MicroVAX II computer.

Data collection in a primitive cell indicates the presence of very few weak reflections incompatible with a C centering of the cell (Dugué, 1978). This fact was observed by Wichelhaus and led this author to refine the structure of $\mathrm{La}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ in the space group Pcam. Most of the weak observed reflections agree with those calculated by using the space group Pcam

Fig. 1. Projection of a part of 0 kl and 1 kl reciprocal layers of a twin crystal of $\mathrm{La}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$. Weak reflections due to parasitic crystal B are shown by empty circles.

Table 1. Coordinates and equivalent isotropic temperature factors $\left(\AA^{2}\right)$ in $\mathrm{La}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ (e.s.d.'s in parentheses)

$$
B_{e q}=(4 / 3) \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}
$$

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
	x	0	0	$0.40(1)$
La	$0.3392(1)$	0	$0.3750(2)$	$0.3747(2)$
S	0	$0.2446(4)$	$1 / 4$	$0.73(2)$
O	$1 / 4$			

Table 2. Selected bond lengths (\AA) in $\mathrm{La}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ (e.s.d.'s in parentheses)

$2 \times \mathrm{La}-\mathrm{O}$	$2.389(2)$	$2 \times \mathrm{O}-\mathrm{S}$	$3.473(1)$
$2 \times \mathrm{La}-\mathrm{O}$	$2.428(2)$	$2 \times \mathrm{O}-\mathrm{S}$	$4.036(2)$
$2 \times \mathrm{La}-\mathrm{S}$	$3.165(1)$	$2 \times \mathrm{O}-\mathrm{S}$	$4.048(1)$
$2 \times \mathrm{La}-\mathrm{S}$	$3.168(1)$	$2 \times \mathrm{S}-\mathrm{S}$	$3.32(2)$
		$2 \times \mathrm{S}-\mathrm{S}$	$3.320(2)$
$2 \times \mathrm{O}-\mathrm{O}$	$2.970(1)$	$\mathrm{S}-\mathrm{S}$	$2.103(3)$
$2 \times \mathrm{O}-\mathrm{O}$	$2.971(1)$		

with the exception of 411_{P} which is zero in our work. It must be noted also that supplementary conditions to Pcam affect the existence of reflections. Moreover, all the weak reflections can be derived from strong reflections of a C lattice by applying a symmetry plane at 45° to the quasi-equal b and c axes; their relative intensity also depends on the crystal. This can be readily explained by the existence of a ($01 \overline{1}$) twin crystal B with interchanged b and c axes. The volume ratio $r=20$ for crystals A and B was then estimated from the unique reflections of A and B (Fig. 1). Intensities corresponding to the larger crystal A were calculated by using the relation $I\left(h k l_{A}\right.$ $=\left[I_{1}-(1 / r) I_{2}\right]\left[r^{2} /\left(r^{2}-1\right)\right] \quad$ with $\quad I_{1}=I(h k)_{A}+$ $I(h l k)_{B}$ and $I_{2}=I(h l k)_{A}+I(h k)_{B}$ (Leblanc, Ferey, De Pape \& Teillet, 1984). The space group Cmca was then derived from this set of corrected data and used for the structure determination.

A solution with the La atom in special position 8(d) was found with the multisolution tangent direct method of SHELX76. Successive refinements and difference Fourier maps located the S and O atoms. Refinement of anisotropic thermal motion parameters led to $R=0.017, w R=0.018 ; w=1.0 /\left[\sigma^{2}\left(\left|F_{o}\right|\right)\right.$ $\left.+0.00005 F_{o}^{2}\right]$. Max. and min. heights in final difference map: +2.5 and -2.9 e \AA^{-3}.

Discussion. Final atomic parameters are listed in Table 1 and selected interatomic distances in Table 2.* The (100) projection of the structure is given in Fig. 2. The atomic position parameters, though more

[^0]

Fig. 2. [100] projection of layers of $\mathrm{LaO}_{4} \mathrm{~S}_{4}$ square antiprisms lying at $x=0.16$ and $x=0.34$. Thick lines correspond to short $S-S$ distances.
precise, do not differ significantly from those of Dugué (1978); however, the anisotropic thermal parameters are more consistent with the structure. Thermal motion is now almost isotropic in the $b c$ plane while a large discrepancy between U_{22} and U_{33} values was reported by Dugué (1978).
The structure can be described as built up of slightly distorted $\mathrm{LaS}_{4} \mathrm{O}_{4}$ square antiprisms. These polyhedra share edges in the $b c$ plane and along a. They build infinite (100) layers connected together either by oxygen or disulfide common planes. Short S-S distances [$d=2.103$ (2) \AA] are consistent with the presence of expected disulfide S_{2}^{2-} groups.

References

Alves, R. V., Buchanan, R. A., Wickersheim, K. A. \& Yates, E. A. C. (1971). J. Appl. Phys. 42, 3043-3048.

Ballestracci, R. (1967). Mater. Res. Bull. 2, 473-479.
Borodulenko, G. P., Eliseev, A. A., Kuz'micheva, G. M., Perepelkin, I. V. \& Ponomarev, N. M. (1984). Zh. Neorg. Khim. 29, 198-201.
Dugứ, J. (1978). Thèse de Doctorat d'Etat ès Sciences Physiques, Paris VI, France.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Khodadad, P., Tat Tek, Flahaut, J. \& Domange, L. (1965). C. R. Acad. Sci. 260, 2235-2238.

Klaassen, D. B. M., Van Leuken, C. M. G. \& Maessen, K. M. H. (1988). J. Lumin. 40-41, 696-697.
leblanc, M., Ferey, G., De Pape, R. \& Terlet, J. (1984). Acta Cryst. C41, 657-660.
Ostoréro, J., Fadly, M. A. \& Makram, H. (1976). Proc. 12th Rare-Earth Research Conference, Vol. 2, pp. 943-952.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Wichelhaus, W. (1978). Naturwissenschaften, 65, 593-594.

Acta Cryst. (1990). C46, 1378-1381

Structure de $\mathbf{C u}\left(\mathbf{H P O}_{\mathbf{3}} \mathbf{H}\right)_{\mathbf{2}}$

Par M. Sghyar
Laboratoire de Chimie Minérale Appliqueé, Faculté des Sciences, Fès, Maroc

J. Durand et L. Cot

Laboratoire de Physicochimie des Matériaux (URA 1312 du CNRS), ENSCM, 8 rue de l'Ecole Normale, 34053 Montpellier CEDEX, France
et M. Rafiq
Laboratoire de Chimie Minérale Appliquée, Faculté des Sciences, Fès, Maroc
(Reşu le 28 septembre 1989, accepté le 7 décembre 1989)

Abstract. Copper bis(hydrogenphosphonate),
$\mathrm{Cu}\left(\mathrm{HPO}_{3} \mathrm{H}\right)_{2}, \quad M_{r}=225 \cdot 5$, monoclinic, $P 2_{1} / a, \quad a=$
$7.4748(6), \quad b=9.9406(7), \quad c=7.5175(5) \AA, \quad \beta=$
0108-2701/90/081378-04\$03.00
99.722 (4) ${ }^{\circ}, V=550.55(8) \AA^{3}, Z=4, D_{m}=2.81$ (1) (by pycnometry), $D_{x}=2.722 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=$ $0.71069 \AA, \quad \mu=4.323 \mathrm{~mm}^{-1}, \quad F(000)=444$, room © 1990 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52816 (6 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

